PLANT DNA FLOW CYTOMETRY

Jan Bartoš

Laboratory of Molecular Cytogenetics and Cytometry Institute of Experimental Botany Olomouc, Czech Republic

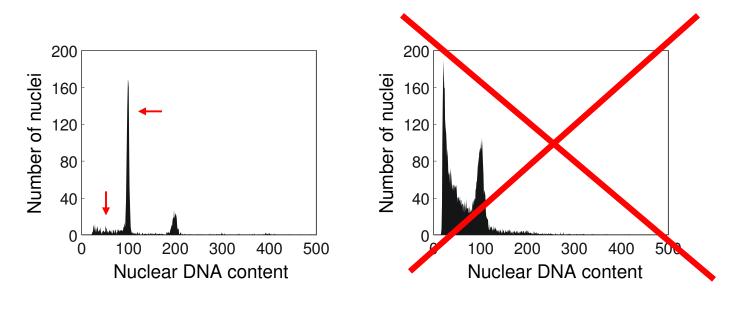
http://www.ueb.cas.cz/olomouc1

Relative nuclear DNA content

- Ploidy (*x*)
- Aneuploidy
- Mixoploidy
- Endopolyploidy
- Cell cycle kinetics

DNA content in absolute units

- Nuclear genome size (pg DNA, bp)
- AT/GC ratio


What do we need for reliable analysis?

"Nice" histograms of nuclear DNA content!

•Narrow DNA peaks (low coefficient of variation, CV)

•Negligible debris background

Golden rule: Choose <u>fresh</u>, <u>young</u> and <u>healthy</u> leaf tissue (but be prepared for "difficult" species!)

Choice of the method involves selection of

- Nuclei isolation buffer
- Procedure for release of intact nuclei from cells
- Fluorochrome to stain nuclear DNA
- Method of standardization

- Choice of the method involves selection of
 - Nuclei isolation buffer
 - Procedure for release of intact nuclei from cells
 - Fluorochrome to stain nuclear DNA
 - Method of standardization

Main functions

- Release of nuclei from cells
- Preservation of integrity of isolated nuclei
- Inhibition of nuclease activity

Typical components

- Chromatin stabilizers (polyamines, divalent cations Mg²⁺, Ca²⁺)
- Sucrose, mannitol
- Metal chelators (EDTA, EGTA) not in Mg²⁺ or Ca²⁺ buffers!
- Salts (KCI, NaCI)
- Reducing agents (mercaptoethanol, DTT, PVP)
- Detergents (Triton X-100, Tween 20)
- Buffers (TRIS, HEPES)

By trial and error!

• There is no simple rule to tell which buffer will work best

Consider the following

- DNA fluorochrome that will be used to stain nuclear DNA
- Need to suppress the action of secondary metabolites
- Need to avoid precipitation of mucous substances

- Galbraith buffer (Galbraith et al. 1983)
 - MgCl₂ / sodium citrate buffer; usually satisfactory results
- Bergounioux et al. (1986)
 - "Tissue culture salts"; works well with most of materials
- LB01 (Doležel et al. 1989)
 - Polyamine buffer; works well with most of materials
- Otto buffers (Otto 1991) two-step procedure!
 - Citric acid; excellent resolution with most of materials
- Arumuganathan and Earle (1991)
 - MgSO₄ buffer; procedure requires centrifugation
- TRIS-MgCl₂ (Pfosser *et al.* 1995)
 - Simple composition; works well with some materials

Choice of the method involves selection of

- Nuclei isolation buffer
- Procedure for release of intact nuclei from cells
- Fluorochrome to stain nuclear DNA
- Method of standardization

Materials used for analysis of nuclear DNA content

Type of material

- Fresh materials
- Fixed materials (formaldehyde or ethanol : acetic acid fixatives) (not suitable for genome size or AT/GC content!)
- Special materials (dry seeds, herbarium vouchers)

Quantity

 Depends on the method (20 – 100 mg / sample) (more is not always better!)

How to release intact nuclei from plant cells?

Fresh materials

- Mechanical homogenisation using <u>sharp</u> razor blade or scalpel (not always suitable for suspension-cultured cells)
- Lysis of protoplasts in a hypotonic buffer (laborious but excellent histograms)

Fixed materials

- Formaldehyde ⇒ mechanical homogenisation
- Ethanol : acetic acid (3:1) ⇒ enzymatic hydrolysis of cell walls
- Special types of materials
 - Dry seeds ⇒ sand paper
 - Herbarium vouchers ⇒ mechanical homogenisation

Choice of the method involves selection of

- Nuclei isolation buffer
- Procedure for release of intact nuclei from cells
- Fluorochrome to stain nuclear DNA
- Method of standardization

Fluorescent stains for DNA

Fluorescent Dye	Primary Binding Mode	Wavelength (nm)*	
		Excitation	Emission
Ethidium bromide**	Intercalation	530	605
Propidium iodide**	Intercalation	540	615
Hoechst 33258	AT-binding	365	465
Hoechst 33342	AT-binding	360	460
DAPI	AT-binding	365	450
DIPI	AT-binding	365	450
Chromomycin A3	GC-binding	445	570
Mihtramycin	GC-binding	445	575
Olivomycin	GC-binding	440	560

*Dye-DNA complex

**Binds also to double stranded RNA!

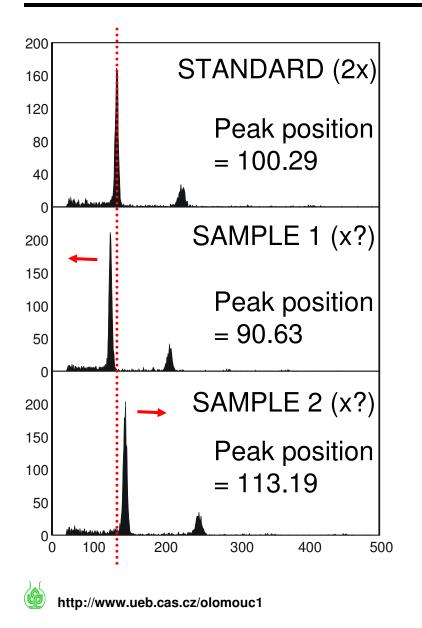
http://www.ueb.cas.cz/olomouc1

Consider the following

- Type of DNA fluorochrome
 - ➤ Genome size ⇒ <u>only</u> DNA intercalator (!)
 - ➢ Ploidy, cell cycle ⇒ any DNA fluorochrome
 - > AT/GC ratio ⇒ two separate measurements (DNA intercalator, AT- or GC-binding dye)
- Optimal concentration
- When to add the fluorochrome
 - > Fluorochrome present in the nuclei isolation buffer
 - > Fluorochrome added to nuclei suspension

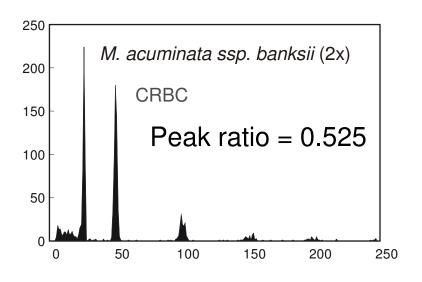
Choice of the method involves selection of

- Nuclei isolation buffer
- Procedure for release of intact nuclei from cells
- Fluorochrome to stain nuclear DNA
- Method of standardization


 Flow cytometry estimates DNA content in relative units (channel numbers)

DNA peak position may vary due to

- Random instrument drift
- Variation in sample preparation and staining procedure


Standardization

- External
 - > Rapid screening of ploidy levels
- Internal
 - > Precise estimation of DNA ploidy levels, incl. aneuplooidy
 - > Determination of genome size

YES – if acceptable

- Rapid and convenient, <u>but</u>:
- Precise ploidy determination not possible
- Larger fluctuation of peak position with non intercalating dyes

Variation in DNA peak ratio

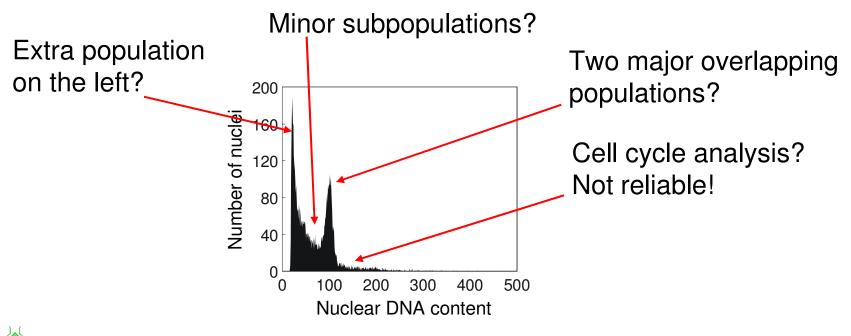
n	13
Mean	0.527
S.D.	0.11

YES – if possible (and needed)

- Permits precise estimation of DNA ploidy level
- Other species may serve as standard
- More laborious:
 - > Two samples in one
 - Requires calculation of peak ratio

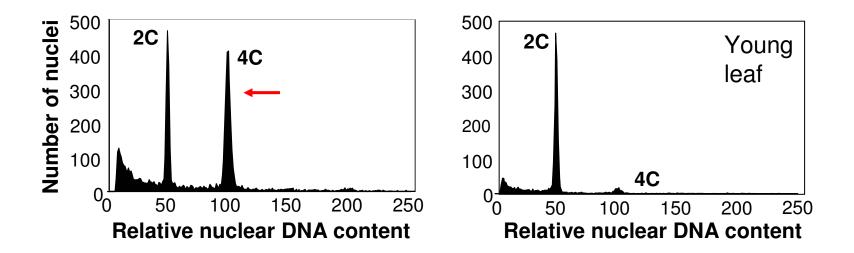
The rule of seven

- Test different tissues (if possible); in case of non-fixed materials the tissues must be healthy and fresh !!!
- Try different ratios of material : isolation buffer
- Compare different nuclei isolation buffers
- Test different detergents at different concentrations
- Check the effect of reducing agents
- Prolong nuclei incubation in the isolation buffer
- Pellet the isolated nuclei and resuspend them in a fresh buffer

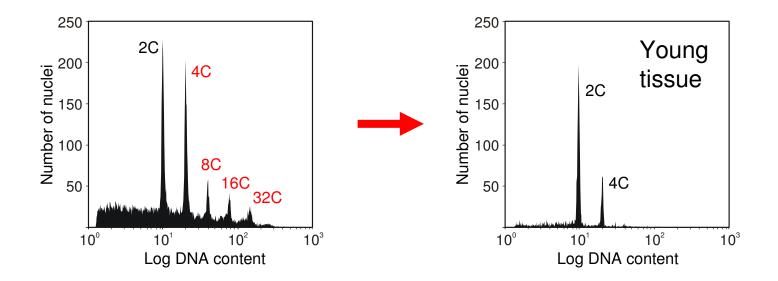

 Relative simplicity of DNA flow cytometry may be deceiving and lead to erroneous conclusions

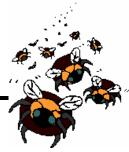
Typical problems

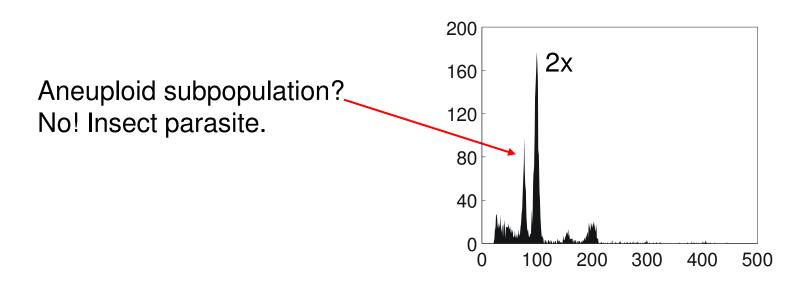
- Excessive debris background, high CV of DNA peaks
- Problems with standardization
- Presence of non-cycling and endopolyploid cells
- Contamination of material with other organisms


Interpretation of DNA content histograms

- Narrow DNA peaks and negligible debris background ⇒ EASY
- Broad DNA peaks and excessive debris background
 ⇒ DIFFICULT / IMPOSSIBLE


Not always easy to know!


- Cells with 4C DNA content may be 2x cells in G₂ or 4x cells in G₁
- Useful hint: use young, actively growing tissues to exclude non-cycling cells in G₂


Not always easy to know!

- Polyploid and endopolyploid cells may have the same DNA content
- Useful hint: use young, non-differentiated, actively growing tissues to exclude endopolyploidy

- Nuclei of a parasite may be isolated together with the nuclei of your material
- Check carefully any result with unexpected peaks!
 - Clean the leaf and make a new sample (not always successful)
 - Use another leaf or plant (preferable)

GOOD LUCK!